「   」カテゴリーアーカイブ

「オールド弦楽器」においての音響システムについて

私は ヴァイオリンという楽器は ビオラやチェロと比べて共鳴現象が不全でも F字孔がエネルギー変換の受け皿になりやすいため、チェロやビオラと比べて 破綻しにくい弦楽器であると考えています。

逆に言えば、チェロやビオラは響胴の共鳴部が十分に機能しなければならないので 変換効率の側面から、完成度の高いものを製作することは ヴァイオリンを製作するより相対的にむずかしいと言えます。

Joseph Naomi Yokota     Violin, Tokyo  2008年

そこで 私は「オールド弦楽器」の特徴から 音響システムとして仮説を立てた上で、まず 検証ヴァイオリンの製作を 2004年11月11日に着手しました。これは 7年程の期間に及びましたが、試行錯誤しながら 7台のヴァイオリンを製作しました。

そして この過程で 仮説の音響システムに修正を加えながら、それをヴァイオリン族のプロト・タイプとして確定させました。

この準備を経た 2011年3月7日に、私は いよいよ‥ チェロの設計に取りかかりました。

ここから この時に製作した、私にとっての 原型チェロ ( Prototype cello ) の お話しをさせていただこうと思います。

■  響胴の軸組み調整

 これは 響胴に組み上げに着手したところで、ネックやF字孔の設定と 駒位置やブロック配置により 表板と裏板の基本となる軸線の組み合わせのバランスを修正しているところです。

私は 表板側の軸線を このように設定しています。

この表板側の軸線は 側板部とも連動します。私は 特にブロック部との関係が重要だと考えます。

そして、これにネックやサドル、エンドピン、それから表板と裏板のパフリングより外側部が 加わることで 楽器的個性が生れていると思っています。

たとえばネックの水平面上での傾きは、この 1700年頃製作されたチェロのようになっていたと考えています。

このチェロは 1986年の接ぎネックの際に、ネックが向かって左回りに起こされていますが、元々NHK交響楽団OBのチェリストが使用していた時は もっと幅が狭くてボタン部もクラウン無しで小さい設定であった製作時の様子が残っていました。

ですから この写真の時点では ネックがだいぶん起こされていますが、元の傾きの名残で右に傾いている様子は確認出来ると思います。




 

 

 

 

 

 

 

このようなネックの役割のうち “ネジリ” に関しては チェロとヴァイオリンは割合が違うだけで類似していますので、私は 1950年代にアメリカで撮影された ヴァイオリン演奏を鏡像の動画にしてあるものが、最も分かりやすい資料であると思います。


そして、サドル位置も同じ理由で黎明期から 上写真のような位置として設定されていたようです。このチェロでは「オールド弦楽器」の復元楽器としてこのように表板と側板、そして裏板のバランスを設定しました。

 

「オールド・チェロ」の製作方法についての検証実験

弦楽器のしくみは多少難解ですが‥「 オールド・ヴァイオリン 」と、「 “写し”として製作されたヴァイオリン 」、そして「 贋作ヴァイオリン 」を見分けるには、『 オールド弦楽器の製作方法 』を知ることが重要ではないかと 私は考えます。

そこで、16世紀中頃から 18世紀の終わりまで製作された弦楽器の音響システムを実証するために、2015年に私が製作したチェロの事例を用いて「オールド弦楽器」の特徴についてお話しさせていただこうと思います。

なお、ここでは ヴァイオリンより多少バランスの違いが見えやすいチェロを用いますが、基本的な仕組みはヴァイオリンや ビオラも同じとご理解ください。

Cello 1700年頃 パーツ無し重量 2280g / 総重量 2789g

弦楽器は固有振動がそのキャラクターを決定します。ですから製作する場合は まず、総重量とそれを構成する それぞれの部分の重量配置 ( 重心コントロール )と、 それらのゆれ方の関係性を決定する必要があります。

そこで まず基本からですが、 オールド・チェロは 響胴サイズが様々です。これを アントニオ・ストラディヴァリ ( ca.1644-1737 )や、ジロラモ・アマティ Ⅱ ( 1649-1740 )、ヨーゼフ・ガルネリ ( 1698-1744 ) などのチェロで見て下さい。

 

● Girolamo Amati Ⅱ ( 1649-1740 ) Cello, 1690年                                      F. 737 -352 – 243 – 439 / B. 738 – 352 – 239 – 431                                    Stop 397mm / ff ( between Tow holes ) 82.2mm                                     Head L. 209mm / Eyes width 63.2mm

● Antonio Stradivari ( ca.1644-1737 ) Cello,”Gore-Booth” 1710年     F. 756 – 343.5 – 230 – 437 / B. 756 – 341.5 – 229 – 437                            Stop 407mm / ff 90.8mm / Head L. 204.5mm / Eyes width 67.4mm

● Antonio Stradivari ( ca.1644-1737 ) Cello, “Pleeth” 1732年頃           F. 719 – 339.5 – 231 – 422 / B. 717 – 340 – 230 – 420                              Stop 398mm / ff 92.8mm / Head L. 214mm / Eyes width 66.5mm

● Antonio Stradivari ( ca.1644-1737 ) Cello, “Josefowitz” 1732年      F. 693.5 – 316.5 – 219 – 403 / B. 690 – 319.5 – 220 – 408                       Stop 375mm / ff 86.2mm / Head L. 204mm / Eyes width 67.5mm

● Guarneri del Gesù ( 1698-1744 ) Cello, “Messeas” 1731年                  F. 730 – 349 – 241 – 434 / B. 735 – 354 – 243 – 437                                  Stop 392mm / ff 102mm / Head L. 210mm / Eyes width 66.0mm

このように オールド・チェロは、総重量の前提となる響胴の大きさを理解するだけでも 難易度は高いと思います。

それらを勘案した上で、音響システムの実証用チェロ製作時に私が直接的に参考としたのは冒頭の画像のものも含めた下記の5台でした。

Nicola Albani / Cello ( Worked at Mantua and Milan 1753-1776 )

① Cello 1700年頃                       パーツ無し重量 2280g ( Back 735 – 349 – 225 – 430 / Stop 403.0 ) 総重量 2789g

② Nicola Albani Cello ( Worked at Mantua & Milan 1753~1776 )パーツ無し重量 2250g ( Back 734 – 343 – 236- 427.5 / Stop 392.5 )総重量 2747.8g

③ Giovanni Battista Guadagnini ( 1711-1786 ) Cello 1757年     総重量 2584g ( Back 712.2 – 332.7 – 237 – 419 / Stop 391.1 )

④ Giovanni Battista Guadagnini ( 1711-1786 ) Cello 1743年頃    総重量 2456g ( Back 716.6 – 340 – 228.7 – 423.3 / Stop 391.0 )

⑤ Cello 1790年頃                     パーツ無し重量 1826g ( Back 707 – 320 – 215 – 408 / Stop 379 )   総重量 2330g

そして、最終的に私は下記の規格を採用しました。

● Joseph Naomi Yokota Cello, 2015年                                                             総重量 2389g

表板サイズ:745.5 – 347.0 – 243.0 – 449.0                                                      裏板サイズ:741.0 – 356.5 – 239.5 – 448.0                                                      側板:ネック側 108.3mm – エンドピン側 120.0mm

表板アーチ:28.7mm                                                                                                     裏板アーチ:31.8mm

ヘッド長:205.0mm( ボトム・ヒール位置まで )                                スクロール・アイ幅:66.2mm 指板:30.0mm – 62.4mm – 583.5mm ストップ:403.0mm

この実証用チェロで重要と考えたのは次の5点です。

① オールド弦楽器の豊かな響きは それぞれの部分の振動が合成されることで成り立っていると考えられます。そして、それは 振動体の質量や長さが整数倍の関係のときに重なりやすいと推測できます。

例えば、下図のチェロのように 指板も含めたネック部と 響胴の重さの関係は 1 : 3 で、ヴァイオリンのそれは 1 : 2 といった設定が望ましいと私は考えます。

また、現代型の指板の場合は 指板が空中に突きでるネック端部に重心を合わせて 1 : 1 にしておくと 音量バランスが整いやすく、そのうえ指板自体の軸組を工夫することで運動特性をある程度 選択できるため、響胴に対してのバランスをあわせるときの大事な選択条件であると思われます。

② 弦楽器で深い響きを生むためには駆動系と変換点のエネルギーロスを減らすこと‥ あえて極端な表現をすれば「 振動の持続時間をすこしでも長くすること。」が大切だと考えられます。

このためには”対” となってゆれが残りやすい天秤の「 腹 – 節 – 腹 」の関係を剛性や運動を勘案し設定すること、そして振動エネルギーが通過する経路の工夫、変換点の「 節 – 腹 」の設定も表板の材料特性をよく観察し適切におこなうことで達成できると信じます。

③ 響胴部のバランスは6本の柱 ( ブロック ) の形状と、1本の交換式柱 ( 魂柱 ) やパフリング外縁部の剛性 ( 形状 ) を工夫して 表板と側板の接着面( Reference plane )に対しての重心位置をあわせることで調和させることが可能と思われます。

④ 響胴中央軸に対してのネック上面の軸は低音側 ( バスバー方向 )に合わせ、ネック下方面 の軸は裏板ジョイント方向にむけて「 ねじり 」を積極的に活用する設定で製作します。

⑤ 低音の共鳴現象が生じやすいように 表板の重さはバスバー無しの白木状態で 350g以下で、裏板は 550g以下、側板部が 500g以下とし、響胴部のなかで 表板と裏板側 ( 側板を含む )の関係を 1 : 3 で製作します。

同じく響胴とネック部の関係を 1 : 3 とするために指板は 200g以下で ネック & ヘッドは 300g以下にします。これらの合計である 2000g以下にするためには、立体的形状や幾何剛性を積極的に利用し安定した状態が持続できるように工夫します。

干渉についてのメモ

■ 自作チェロの重量配分図( 塗装前 )

総重量:2389.2g ( 完成日 2015-12-26 ) パーツ無し重量:1942.0g ( 白木 1885.5g ) / パーツ合計:447.2g

重量配分 ネック部 485.5g : 響胴 1456.5g

塗装前ネック & ヘッド:297.0g – 指板 & ナット:186.0g                   表板部: 411.0g – 側板部:484.7g – 裏板部:531.0g

このチェロは 仕上がり総重量が 2389.2g でしたが、これはもちろん偶々ではなく着手時の目標値が 2250g ~ 2500g でしたので計算の通りといったところです。

現代では チェロの重さは 2300g~3200g 位で、個体差が大きいようです。なお、一般的に使用されているパーツ重量の合計は 380g~580g 程で、普及品タイプのチェロはパーツ無し( 指板含む )重量が 2400g~2800g ほどだと思われます。

あくまで個人的な意見ですが‥ 私は チェロの総重量が 2900g を越えるのは避けたほうが望ましいと思っています。例えば、2012年製 GLIGA gemsⅠシリーズの 初心者用チェロは パーツ無し重量が 2800gで、総重量が 3186g もありました。

GLIGA Cello ( gems Ⅰ), 2012年

こういう楽器は響胴からネック、ヘッドが一直線に硬直していて鳴らすとチューニングも狂いやすく、響胴も硬いのでボーイングが難しく 右手が疲れやすいのではないでしょうか。

その上、音量が望めませんので 合奏楽器としては薦められません。こういう現実を常々目にしていますので、私は 初心者用のチェロがもっと楽器として性能が改善されることを心から願っています。

■ 響胴の軸組

私は 18世紀末までの弦楽器製作者は 響胴の「 節と腹 」の原理をほぼ正確に理解し、実際に用いていたと考えています。

それらの要素をバランスよく組み合わせるためには 座標となる多数の軸線が必要と考えられます。

このため、私は 16世紀中頃から 18世紀の終わりまで製作された弦楽器の音響システムとしてこれらに残されている座標軸線の痕跡を検証し、表板や 裏板の軸線としてまとめてみました。

ヤーノシュ・シュタルケル(János Starker 1924 – 2013 )さんが使用していたチェロは、1705年にベネチアで Matteo Goffriller ( 1659–1742 ) が 製作したものとされています。

 

この部分の’傷’は ストラディヴァリ・ソサエティの エドゥアルド・ウルフソン( Eduard Wulfson )氏が所有し、ナターリャ・グートマン( Natalia Gutman )さんが使用している グァルネリ・デル・ジェスが製作したとされる 1731年製のチェロとも共通しています。

Bartolomeo Giuseppe Guarneri ( 1698-1744 )                           Violoncello 1731, ” Natalia Gutman ”

このガルネリが製作したチェロは A ゾーンと B ゾーンの’傷’がとくに深くつけられています。

1982年にニューヨークで生まれたチェリスト、アリサ・ワイラースタイン( Alisa Weilerstein )さんが 2014年から使用しているチェロにも同じ特徴があります。

この楽器は Domenico Montagnana が 1730年に製作したとされています。そして この楽器ではA ゾーンとB ゾーンの傷が 確認できるとともに、C ゾーンの ‘深い傷’ も見ることができます。

私は これらを ‘節’としての ‘折れ軸’を調整した痕跡と考えています。

私は このような「オールド・チェロ 」などの分析から ‘座標’や ‘折れ軸’としてこれらの線分を製作のために 表板で 100本、裏板は 60本選び設定することにしました。

因みに、軸線が機能していない状態は 壊れた弦楽器で見ることが出来ます。

例えばこれは、壊れたコントラバスの修理をシュミレーションするために写真にしてプリントし切り抜いたあとで 破損個所をカットし表板の変形を実際のように折り込んだものです。

私の所見では‥ この破損の主因は、左右方向の剛性につながるアッパーやロワーの軸の不全です。

そもそも、弦楽器の多くは上図 点C, 点Dに弦の張力をかけることで 点A, 点B が 中央部に向かって倒れ込むような応力がかかるようになっています。

そして 点A, 点B からの応力は駒などによる中央部の剛性が高いゾーンを避けるように 点E と 点F のアッパーとロワー側にむかいます。

これによって弦楽器の多くは響胴にかかる応力で壊れないようになっています。



ですから、例として挙げさせていただいたコントラバスは下図のように折れ軸が機能するように、バスバーの形状を変更することでバランスを合わせ 再び使用出来るようにしました。

 

摩耗したように加工する “パティーナ加工” について

 

Nicola Gagliano ( ca.1710-1787 ) Violin, Napoli 1737年

「オールド・バイオリン」などでは 摩耗したように加工する “パティーナ加工 ( antique patina) ” が施されているものが多いので、ヘッド部を観察するときも これを念頭に置く必要があります。

その参考例として、このスクロールの右側突起部に注目してください。この部分は 製作された後の “修復” によって 現在この状態となっていると私は判断しました。

                  

Nicola Gagliano ( ca.1710-1787 ) Violin, Napoli 1737年

それは、この ヴァイオリン・ヘッドの “修理部分”が、同時期に製作されたヴァイオリンの摩耗痕跡( 上中央 )と 同様であったと考えられることが決め手となりました。

このような”特殊”と呼んでよいレベルの “パティーナ加工” が施されているヴァイオリンが複数台あるということは本当に素晴らしいと思います。

Nicola Gagliano ( ca.1710-1787 ) Violin, Napoli    1737年

   

私は これらを、製作時に摩耗したような加工をする弦楽器製作者がいた状況証拠であると考えています。

Johann Jais Viola Tölz ( 1715-1765 ) Viola 1760年頃

また、上記のように 摩耗仕様で生み出された非対称性については、このビオラのように 着手時の設定段階( 木取り )で意図されたことが分る弦楽器との比較がその理解をより深めることに役立つと思います。

このように、摩耗痕跡タイプの “パティーナ加工 ” は 複数の作品で比較してみると 一定の法則性を見出すことができます。

Antonio Stradivari ( ca.1644-1737 )  Violin, Cremona “Lipinski” “Giuseppe Tartini”    1715年

たとえば このヴァイオリンは、1700年代に ヴァイオリンソナタ『 悪魔のトリル ( Devil’s Trill Sonata ) 』で有名となった 作曲家 ジュゼッペ・タルティーニ( 1692-1770 )が使用したとされる ストラディバリウスです。

 

私は 「 クレセント・カット( Crescent cut )」と呼んでいますが 三日月型の” 激しい摩耗痕跡 “があります。           

因みに、上写真右側の ” Cremonese ” も イタリア・クレモナに展示されている 有名なヴァイオリンです。このヴァイオリンの 該当する部分には 修復痕跡 が認められます。

さて、これは どう考えるべきでしょうか?

残念ながら このような摩耗痕跡を 『 演奏するためのチューニングなどですり減った。』 と思っている方も多いようで、実際にその判断の誤りにより このように ‘修復’ されてしまう弦楽器もあとを絶ちません。

Antonio Stradivari ( ca.1644-1737 ) Violin, “Sunrise” 1677年

 

これは、 ストラディヴァリが製作した装飾文様入りの有名なヴァイオリン “Sunrise” です。 彼が初期に製作した作品ですが 装飾加工も含めて製作時の状況がよく保存されていることでも知られています。

このヴァイオリン・ヘッドにも 小さなクレセント・カットが入っています。ところがその周りには他に摩耗したような痕跡はあまり見られません。

私は このヘッドにみられる摩耗部とその隣接部との ‘様子の違い’ を不自然( = 意図的 )であると感じます。

それから、これは オーストリア国立銀行が ウィーン・フィル( Wiener Philharmoniker )のコンサートマスターに貸与している 1709製ストラディヴァリウス ”ex Hämmerle” の ヘッド写真です。

2008年に定年退団するまで ウェルナー・ヒンク氏 ( Werner Hink 1943 – ) が使用し、その後 1992年から コンサートマスターに就任していた ライナー・ホーネック氏 ( Rainer Honeck 1961- ) が 演奏に用いている有名な楽器です。

クレセント・カットとなっていたと考えられる 赤色部は接木されているようですが、このヴァイオリンで摩耗部とその周りとの 『 様子の違い 』を 見て下さい。

下画像のように 私はスクロール部を 1段目、2段目、3段目と区別していますが、摩耗痕跡が 1段目のエッジ部でみとめられるのに 2段目、3段目のエッジ部は 完成時のままであるかのように フレッシュです。

この 1709製 ストラディヴァリウス ”ex Hämmerle” の ヘッド1段目とそれ以外のエッジ摩耗の差は、ほかの ストラディヴァリウス‥ たとえば 下写真の 1714年製でも 見ることができます。

この 1714年製のストラディヴァリウスでも、前出の1709年製のヘッド程ではありませんが 同じように三角形の接木がしてあるようです。また、摩耗痕跡も 1段目のエッジ部でみとめられるのに 2段目、3段目のエッジ部は 完成時のままであるかのように フレッシュです。

ヴァイオリンを演奏したことがある方でしたらイメージ出来ると思います。もし チューニングでヘッドに触れたことが摩耗の原因だとしたら 「 この景色 」はあり得ないのではないでしょうか。

これらを検証した結果、ストラディヴァリは 摩耗加工を 多少不自然になるのを承知のうえで、 音響上必要とおもわれる最低限にとどめた弦楽器製作者だと私は考えるようになりました。

さて‥ ヴァイオリン族のなかでも ヴァイオリンと ビオラは 演奏者がヘッドに触れることがある訳ですが、チェロのヘッドは人が触れることは殆どありません。

ところがオールド・チェロの中には、製作者が 前出の ストラディヴァリウスのヘッドと同じように 2、3段目はそのままで1段目だけを”激しく摩耗させた” チェロが存在します。



私も 最初にプロのオーケストラで 2プルトに座っているチェリストから 『 演奏の最中に目の前のオールド・チェロのヘッドをいつも眺めていてね‥ヘッドが ”激しくすり減った” 理由が何度考えてもまったく解からないんだけどどうして?』と質問された時には まったく説明できませんでした。

しかし、同じような質問を何人かから受けましたので 本腰をいれて調べることになりました。

これは 1997年に ヴェネチアの南西80㎞程の街 Lendinara で開催された展示会カタログ ” Domenico Montagnana – Lauter in Venetia ” Carlson Cacciatori Neumann & C. の 109ページに掲載されている 1742年に Domenico Montagnana が製作したとされるチェロです。

16世紀から18世紀にかけて ヴァイオリンやチェロを製作した人は リュート 、シターン や テオルボ 、キタローネや ヴィオラ・ダ・ガンバ をよく知っている弦楽器製作者でした。

左側に1993年に ボローニャの博物館カタログとして出版された ” Strumenti Musicali Europei del Museo Civico Medievale di Bologna ” John Henry van der Meer の105ページに掲載してある、17世紀に製作されたと考えられる テオルボのヘッド写真を置きました。

両者とも、後ろから見たときに中心軸が右側に曲がっていくのが特徴となっています。左右の写真を見比べれば同じ軸取りがしてあるのが理解していただけると思います。

これらのことから、私はクレセント・カットなどのヘッド部の摩耗痕跡は人為的な加工 つまり、ヘッドの中央付近を上下に通る”ゆれるための軸”の調整痕跡であると判断しました。

 

 

ヴァイオリン誕生の土壌

Mandora 1420年頃 L 360.0 W 96.0 D 80.0( 83.0 ) / Wt. 255 g

ペグボックス壁部の厚さを左右差があるように製作すること自体は、ある意味では弦楽器製作者の常識でした。

“The Renaissance Cittern” Francis Palmer London 1617年

これは ルネサンス・シターンや テオルボ ( Theorbo ) などで、垂直軸に対して直交方向に取り付けられている ペグ、ナット、フレット、ブリッジなどの傾きや、ペグボックス部の左右壁厚差を見れば明白だと思います。

しかし 検証を進めた結果‥ 従来の宮廷音楽に加えて ヤコポ・ペーリ (1561-1633 ) や、クレモナに生まれ学び 後にヴェネツィアのサン・マルコ寺院楽長となった クラウディオ・モンテヴェルディ ( 1567-1643 ) 達が、1600年前後にオペラを誕生させたあたりから弦楽器には時代の風が吹いていたことが分りました。

オペラは 急速に普及し1637年には ヴェネツィアにサン・カッシアーノ劇場が開設されると歌劇場建設ブームが起こりました。この時期から 器楽や演奏会場の多様化は 急速に進んだようです。

たとえばフランスでは 1661年にルイ14世の親政が始まり ジャン=バティスト・リュリ ( 1632-1687 )は 宮廷音楽監督に任命され、それまで以上に活躍しました。

Plan du Château de Versailles 1664年

1678年 (1678–1684 )                                                                                                The opulent Hall of Mirrors at the Palace of Versailles

また、アルカンジェロ・コレッリ ( 1653-1713 )は 1675年に ボローニャからローマに移り ヴァイオリン奏者として本格的な活動を始め、1679年にはカプラニカ劇場でオーケストラを指揮し、1681年にはトリオ・ソナタ 作品1 ( 全12曲 )を ローマで出版しています。

Arcangelo Corelli ( 1653-1713 )

Michelangelo’s design of New St. Peter’s Basilica

現在のローマにあるサン・ピエトロ大聖堂は 1506年に建設に着手し、ミケランジェロ ( Michelangelo Buonarroti 1475-1564 ) が 担当したドームは 1588年に着工し1593年に頂塔部の工事が終わりました。

そして1666年にやっと全体が竣工し完成しています。また、ヴェネツィア共和国では 1685年にアントニオ・ヴィヴァルディ( 1678-1741 ) がサン・マルコ大聖堂のヴァイオリニストに就任しています。

Guardi 1775年~77年「1763年の総督アルヴィセⅣモセニーゴの選出」

“サン・マルコ寺院” は 他の都市の中心的聖堂とは異なり、ヴェネツィア共和国時代はカトリック教会の司教座聖堂ではなく、公式には共和国総督の礼拝堂だったそうです。ですから 総督の館であるドゥカーレ宮殿と隣接し繋がっています。これはヴェネツィア共和国のカトリック教会からの政治的独立性の象徴とされ、このことにより宗教関連以外で使用されることも多かったようです。

“18世紀の音楽ホール事情”

これらの時代状況により、私は 1600年代中頃から 弦楽器は ペグボックスの上端位置などで左右差を強くすることも含めた基礎性能の改変がおこなわれたのではないか推測しています。

アンドレア・アマティに代表される黎明期の弦楽器より、17世紀中頃から アントニオ・ストラディヴァリ ( ca.1644-1737 )や、ヨーゼフ・ガルネリ ( “Guarneri del Gesù” 1698-1744 ) も含めた 多くの製作者の弦楽器で “動的”な要素が増やされていくのがこの証と言えるのではないでしょうか。

ヴァイオリンの音は 聴くほかに “見て‥” 知ることが出来ます。

皆さんがご存じなように、弦楽器の表板は スプルース材の年輪がたてになるように使用されています。

そのため縦に割れやすい特性があり それが影響して このチェロの魂柱部には縦方向の割れ( Sound post Crack )が入っていて 表面のニスにも 縦方向のひび割れがはいっています。


私はこのニスに入った縦ひび( a. )はバランスが調和していなかったことで歪みが溜まり 表板が疲労した過程できざまれたものと思っています。

では b. c. そして d. のひび割れはなぜ入ったのでしょうか?
私は この年輪に直交するひび割れは チェロやヴァイオリンに設定された音響システムによって入ったものと考えます。

因みに‥ 私がこのように ニスのひび割れと響きを関係づけて考えるようになったのは  2003年 9月29日 の 16:45頃からです。

長くなりますが、ここで その時のお話をさせて下さい。

それは 2週間前まで 11歳の長女が使っていた 1/2サイズのヴァイオリンを 7歳の二女が使いたいと言い張ったので 、その準備として 弦などの交換を検討するために 工房の入り口に立ってこのヴァイオリンを私がチェックしている時のことでした。

風もなく空が晴れわたったおだやかな夕方で 私が立っている工房の入り口には まだ日差しがさしこんでいました。

そのときニスのひび割れが 『 キラッ ! 』と蜘蛛の糸のように光ったのが 私の目にとびこんできました。 それで私は このヴァイオリンの表板と側板にはいった ニスのひびを確認してみました。 はじめは 『  なるほど。 分数ヴァイオリンでも フルサイズとおなじ入り方をするんだ‥‥ 。』と思いながら観察していたのですが、 当時 私が記憶していた他の事例とあまりにも合致していたので 『  これは‥ もしかして! 』と思ったときに 私の顔色は変ったと思います。

それまでニスのひび割れを特に重大なことと思っていなかった私でしたが、このときヴァイオリン響胴の振動モードとそれが きちんと繋がったのです。 私はこのとき『  ヴィジョンが降りてきた‥‥ 。』感覚のなかで 『  いま自分の頭のなかにうかんでいるヴァイオリンのヴィジョンは本当なのかな? 』と 戸惑いながらも楽器の角度を変えたりしながら観察して、もう一度 頭にうかんだ ヴァイオリンの振動モードに誤りがないかを検討しました。

その最中のことです。  私が表板側と側板に気をとられてよくみていなかった 裏板がレイヤー映像のように頭のなかに浮かんだのです。 『  表板がこう振動して側板はブロックによって こう動き‥ということは裏板のここら辺りにこういう形状のニスひびが‥‥ 。』と 私は 独り言をいいながら 裏板を見るために ヴァイオリンをひっくり返しました。

いまでも その瞬間をときどき思い出します。
とにかく感動しました。  私が予測したとおりの形状の小さなニスひび割れが 裏板の推定した位置に 入っていたのです。 おかげさまで 私は 鉱山技師が鉱脈を発見したような 歓びを経験しました。

下の図は そのニスひび( 表板側 )を 2005年になって 私のノートに記録したものです。


この時に私がはじめに気がついたのは下幅広部に真横に入っているニスひびが テールピースの下で繋がっておらず 魚のウロコ状のニスひびとなっている事でした。

それで私は このニスひびは ボトムブロックの端付近( 高音側 )の点 a. から ゆれがはじまる”ねじり”によるものと判断したのです。

その証拠に反対側のネックブロック部をみると 点 b. 辺りからブロックのねじりによるニスひびがはいっています。


このような ネックブロックのねじりは上の動画で確認できます。
おそらく撮影の都合だと思いますが鏡像になっていますので ネックブロックは手前側が高音でその奥が低音側となっています。

私は これらのニスに刻まれたヒビは弦楽器のねじりについて 決定的な状況証拠となるものと考えています。

“Varnish crack”   1970年製     Karl Hofner Cello( 2006年撮影 )

【  弦楽器のニスに入ったヒビが物語ること‥。】

この投稿はここまでとさせていただきます。

.

2017-7-10               Joseph Naomi Yokota

本日よりブログを再開します。

old-violin-5-l2016-10-18   Joseph Naomi Yokota

過去ブログ

750-jahre-berlin

 

私は J.F. ケネディが 1963年6月 西ドイツ・ シェーネベルク市庁舎前で 『 自由世界にいきる我々は、どこにいても ベルリン市民である。』 とした演説に共感をおぼえた世代です。

1989年11月9日 雑誌取材でコラムニスト『 えのきどいちろう  』は ベルリンにいました。 彼は『 ”壁”がある東西ベルリンを取材中に”壁”の崩壊に立ち会い、俺って持ってると思った!』 といっていました。 その彼のお土産が 東ドイツ発行の『 ベルリンの街が誕生して 750年 記念切手 』でした。

昔のことですが、私は 1987年の西ドイツ・フランス合作映画 、ヴィム・ヴェンダース監督作品 『 ベルリン天使の詩  』がお気に入りで、有楽町の古びた映画館に4、5回は通いました。守護天使のダミエル( ブルーノ・ガンツ )が カシエル( オットー・ザンダー )に別れを告げ舞い降りた” 流れの瀬 ” で飲むコーヒーを幸せな心持でながめていました。

映画の冒頭のハントケの『 わらべうた 』 にショツクを受けたのをいまでもよく覚えています。

ベルリン天使の詩( うた )

子供は 子供だった頃
腕をブラブラさせ
小川は 川になれ
川は 河になれ
水たまりは 海になれと思った

子供は 子供だった頃
自分が 子供とは知らず
すべてに魂があり
魂は ひとつと思った

子供は 子供だった頃
なにも考えず
癖もなにもなく
あぐらをかいたり とびはねたり
小さな頭に 大きなつむじ
カメラを向けても 知らぬ顔

子供は 子供だった頃

皆さんもご存じなように 1961年8月13日から建設が始まった 『 ベルリンの壁 』は 1989年11月9日開けられ、1990年10月3日 統一ドイツが誕生しました。

私は 時折この切手をながめては 『 時が経つとは、こういう事か…。』 と思っています。

(  2010-11-17  blog より  )

○   このヴァイオリンは 私が側板を復元しました。

 

振動モード参考モデル

弦楽器にとって振動モードと剛体としての運動条件が響きをきめる重要な要素になっています。

皆さんがご存じなように一次振動モードはわかりやすいですね。
ちなみに今日ではギターやベースなどの弦楽器の演奏をiPhoneで撮影すると、カメラに搭載された CMOSイメージセンサの誤差によって起こる “ローリングシャッター現象” によってまるで自分の目がオシロスコープになったかのような映像で見ることができます。

ローリングシャッター現象とは CMOSセンサーが目の前の風景を一度に全て記録せずにイメージの上部から順番に記録を行なうために、高速に動く被写体を撮影すると取り込む時差によよって歪みが生じておこる現象です。

一次元モードのアニメーション
粒子速度

以下の4つのアニメーションは、それぞれ一次元音場の点 (0)において音が発生し、x方向へ伝搬し、右端の剛壁で反射、後退波が発生、その後両者の干渉によって定在波が発生する様子を示している。またこれは2次元音場における「軸波 (axial mode)」の一つの断面とみなすこともできる。

1.波の数が一つの時
sinmode1

2.波の数が二つの時
sinmode2

3.波の数が三つの時
sinmode3

4.波の数が四つの時
sinmode4

ニ次元モードのアニメーション
二次元音場の固有振動モードの生起

以下のアニメーションは剛壁に囲まれた二次元音場の点(0,0)において音が発生し、(x,y)両正方向へ伝搬し、剛壁で反射、後退波が発生、その後両者の干渉によって定在波が発生する様子を示す。またこれは3次元音場における「接線波 (Tangential Mode)」の一つの断面とみなすこともできる。

音圧
1.固有振動モード(1、1、0)

このアニメーションは、xy 平面における音圧 p の時々刻々の変化の様子をあらわしている。
剛壁に囲まれた二次元音場の点(0,0)において音が発生し、(x,y)両正方向へ伝搬し、剛壁で反射、後退波が発生、その後両者の干渉によって定在波が発生している。

2wave1

<注意>厳密には、二次元音場において点音源から生じた音は「円筒波」として伝搬すると考えられる(あるいは、二次元の波動方程式の解は円筒波を表わすハンケル関数を用いて得られる)。しかしここでは簡単のため、現象を平面波で近似して示している。このため波面は矩型となっている。なお数学的に球面波は平面波を重ね合せて得られることが知られている。

2.固有振動モード(1、2、0)

二次元モード
このアニメーションは、xy 平面における音圧 p の時々刻々の変化の様子をあらわしている。
剛壁に囲まれた二次元音場の点(0,0)において音が発生し、(x,y)両正方向へ伝搬し、剛壁で反射、後退波が発生、その後両者の干渉によって定在波が発生している。
2wave2

<注意>厳密には、二次元音場において点音源から生じた音は「円筒波」として伝搬すると考えられる(あるいは、二次元の波動方程式の解は円筒波を表わすハンケル関数を用いて得られる)。しかしここでは簡単のため、現象を平面波で近似して示している。このため波面は矩型となっている。なお数学的に球面波は平面波を重ね合せて得られることが知られている。

粒子速度
上の(1,1,0)の場合の、x, y 二つの方向に関する粒子速度成分を左右の図で示す。反射波が干渉した結果、剛壁における法線方向速度成分が0になる様子が示されている。

固有振動モード(1、1、0)
このアニメーションは、xy 平面における粒子速度 u の時々刻々の変化の様子を x , y 二つの方向に分けて表わしている。
剛壁に囲まれた二次元音場の点(0,0)において音が発生し、(x,y)両正方向へ伝搬し、剛壁で反射、後退波が発生、その後両者の干渉によって定在波が発生している。
2wave3

<注意>厳密には、二次元音場において点音源から生じた音は「円筒波」として伝搬すると考えられる(あるいは、二次元の波動方程式の解は円筒波を表わすハンケル関数を用いて得られる)。しかしここでは簡単のため、現象を平面波で近似して示している。このため波面は矩型となっている。なお数学的に球面波は平面波を重ね合せて得られることが知られている。

三次元モードのアニメーション

音圧の固有振動モード (1,1,1)
このアニメーションは、xyz 空間における音圧 p の時々刻々の変化の様子を表わしている。
剛壁に囲まれた三次元音場の点(0,0,0)において音が発生し、(x,y,z)それぞれの正方向へ伝搬し、剛壁で反射、後退波が発生、その後両者の干渉によって定在波が発生している。

( 三次元空間を表現するのは困難なため、三次元空間の断面を並べて表現している。)
sptittle

3wave2

ポテンシャルモード
ここでは速度ポテンシャルの変動を黒点の大きさの変化で示している。つまり、音圧の変動はその動きの逆(ポテンシャルが大きい場所では音圧は小)で示されている。室の中央部で音圧が低く周壁部で音圧が高いことが分かる(アニメーションでは、中央での黒丸の動きが大きく、ポテンシャルの変動が激しいことが表されている)。

このアニメーションは、立方体室の点(0,0,0) から音が発生し、時々刻々のポテンシャルの変化の様子を表わしている。

1331mo111
(1,1,1)モードです(776 k)(.mov)

彫刻技術においての 優劣の見分け方

Giovanni Paolo Maggini ( 1580- ca.1633 )   Cello,  Brescia   the 1600s

私は ”オールド・ヴァイオリン” や、”オールド・チェロ” などの弦楽器で高度な彫刻技術を目にするたびに 本当に感動します。

そこで、そこにある豊かな世界を分かち合うために『 彫刻技術という視点から優劣を見分けることで その弦楽器を評価できます。』というお話しをしようと思いました。

そこで、先ずは「彫る」技術をヘレニズム時代の大理石像でイメージしてください。

● 盛期ルネサンスに影響を与えた ヘレニズム時代の彫像について
なお、これらの大理石彫像の本質について‥ 特に、比率についての意識を知りたい方には 下の投稿リンクをお勧めします。

● エーゲ海 キクラデス諸島の “偶然”について
(  長文で恐縮です。)

“De la statue”  1464年刊,  Leon Battista Alberti ( 1404-1472 )
『 デ・スタトゥア 』から復元された計測器

彫刻技術に関してさかのぼって調べてみると‥『 ルネサンス期に理想とされた”万能の人” 』と評されたアルベルティが、1464年に発表した『 彫刻論 』で、 彼が考案した計測器を使用することを提案しているのが目に留まります。

デフィニターまたはフィニトリウムとよばれ、回転する目盛り付きロッドが固定された円形ディスクをもち、そこから垂直錘が下がったものです。

これによって、極座標と軸座標の組み合わせで モデル上の任意のポイントが規定でき、現代のパンタグラフのようにモデルから大理石に移す事ができます。

“Measuring sculpture for reproduction”
Francesco Carradori(1747-1824),  Firenze  1802.

また、フィレンツェの彫刻家であったカラドーリが 1802年に出版した『 彫刻を学ぶ人のための基礎教育 』には、大理石彫刻のための計測方法や器具などが紹介されています。

“Measuring sculpture for reproduction”
Francesco Carradori (1747-1824),  Firenze  1802年

このように、彫刻家にとって対象物を計測することや 大理石を削ることは 昔から難問に等しいものでした。

しかし それでも‥ 私たちは、時代によって計測方法や 削り方の違いはありますが、残された彫像でわかるように モース硬度が 3~4 の「岩石」で作品を制作し続けてきたのです。

たとえば、下の動画では “Pointing machine” を計測に用いる彫刻技法による大理石彫刻が 紹介されています。

ポインティング・マシンは、その名前を イタリアのマキネッタ・ディ・プンタに由来しており、本質的には 任意の位置に設定して固定できる ポインティング・ニードルです。

この器具は、石膏、粘土、またはワックスの彫刻モデルを、木材や岩石に正確にコピーするための測定ツールとして使用されています。

発明者は フランスの彫刻家の ニコラス・マリー・ガトー ( 1751-1832 ) と 英国の彫刻家 ジョン・ベーコン ( 1740-1799 ) であるとされており、後にカノーヴァ ( Canova ) によって普及しました。

上の動画のように石膏モデルで 凹凸の基準点の位置と深さをニードル先端で取得し、その基準点を大理石に移します。エンピツの下に見えるのがニードルの先端です。大理石彫刻では、このように「 窪みの底 」として基準点を先に彫り込みます。

そして、座標となるそれらの基準点の印が消えないように凸部を削っていくのです。それから 最後の仕上げ段階の削りで 再度、くぼみ部を慎重に彫り込みます。

このように、素材としてはハードルが高い大理石彫刻ですらこの細やかさですから、木彫の分野においては 繊細さがより一層発揮されたのは当然といえるかも知れません。

たとえば‥『 北方ルネサンス 』と呼ばれていますが、ミケランジェロ ( 1475-1564 ) が活動していた頃に、ドイツで素晴らしい彫刻作品を作った ティルマン・リーメンシュナイダー( ca.1460-1531 ) の木像にそれを見ることができます。

『 Hl. Sebastian ( 聖セバスチャン ) 』 製作年 : 1515年頃  /  菩提樹 ( Tilia miqueliana ) シナノキ科
Tilman Riemenschneider ( ca.1460-1531 )

“Self-portrait” ( in the Predella of the Altar of Creglingen )   
Tilman Riemenschneider ( ca.1460-1531 )

この彫像に近いレリーフは、ティルマン・リーメンシュナイダーが 自らをモデルとしたと伝えられています。その彫刻技術を駆使した表現を、私は 本当にすばらしいと思っています。

そして、彼が亡くなった頃に開発された  ”オールド・ヴァイオリン” や、”オールド・チェロ” などを含めた木製弦楽器の場合も同じように細やかな工夫を見ることができます。

“Cittern”   possibly by Petrus Rautta, England,  1579年

“Cittern”   possibly by Petrus Rautta, England,  1579年

これを見分けるには『窪みの彫り方 』を観察してください。

窪みは一見したときに なんの違和感も感じませんが、彫刻技術として考えれば”窪みを彫り込む技術”は 難易度が最高度の領域となります。なぜなら彫り込む製作者が 3次元的に見切る力を持っていないと、精緻な音響プランであっても 実際に落とし込めないからです。

 

TT

 

 

 

 

この観点で上のヴァイオリン裏板画像をながめてみてください。
ヴァイオリンなどの観察のはじめは、『 どこが、どのように窪んでいるか ?』という点に着目し観察することが 見極める基本だと私は思います。

残念ながら ヴァイオリンなどの弦楽器において扁平にみえるものは未熟な人が製作した可能性が高いと 私は思っています。 木彫で使用する道具は考えないでもちいると‥ 出っ張ったところが削れます。これが単純化をまねき全体としてでこぼこが少ない扁平な印象の弦楽器の出現につながります。

 

 

 

 

まず参考のため2台のヴァイオリン裏板画像をごらんください。

この ヴァイオリンは 1620年頃 ブレシア( Brescia )で マッジーニ( Giovanni Paolo Maggini  1580 – c.1633 )  が   製作したものとされています。

Giovanni Paolo Maggini ( 1580 – c1633 ) Brescia 1620年頃 - A MONO

それから、もう一台は   Antonio Stradivari ( c.1644 – 1737 )が  1703年に製作されたとされているヴァイオリンで ” Alsager “と呼ばれているものです。

Antonio Stradivari violin 1703年 Alsager - B L
私は これらを観察するときに大切なのは 着目点としてなにを観察するかだと思います。

たとえば ヴァイオリンの演奏技術の優劣を判断したければ 音楽の特性から考えて一つの響きを『 音の始まり( 音の入 ) 』と『 音の終わり( 音の出 )』とに 意識的に聞き分ければ、十分に 優劣の判断ができると思います。

私は 上質な演奏は『 音の入 』を完全にコントロールできると達成できる可能性が高いと思っています。しかし、真の意味での音楽的に完成された演奏を達成するためには 『 音の出 』のコントロールが必要になって来ると考えています。

つまり演奏技術においては 演奏者が 『 音の入 』をコントロールするより、『 音の出 』( ” 音の始末”とも言います。)をコントロールするほうが はるかに難しいということを念頭において聴けば演奏技術としての優劣判断はほとんどの皆さんが 判断できると私は信じています。

ただし、これは『音楽的であるか』や、それが『ゆたかな音楽であるか』という観点ではありませんのでご理解のほどをお願いいたします。

 

さてヴァイオリンや チェロなどの木製品の場合です。
重要なのは 彫刻技術の能力は『くぼみを彫る技術 』に現われるということです。

この観点で上のヴァイオリン裏板画像をながめてみてください。
ヴァイオリンなどの観察のはじめは、『 どこが、どのように窪んでいるか ?』という点に着目し観察することが 見極める基本だと私は思います。

残念ながら ヴァイオリンなどの弦楽器において扁平にみえるものは未熟な人が製作した可能性が高いと 私は思っています。 木彫で使用する道具は考えないでもちいると‥ 出っ張ったところが削れます。これが単純化をまねき全体としてでこぼこが少ない扁平な印象の弦楽器の出現につながります。

5 Antonio Stradivari Schreiber - da Vinci 1712 ( c 1644-1737 )

そもそも弦楽器は あの響きがするように工夫されています。
たとえばこのストラディヴァリウスを用いた共鳴モードで裏板部の動きを観察してみてください。

409hz star0409hz 680hz star0680hz817hz star0817hz1690hz star1690hz

私は 多様な音色をもつヴァイオリンは その構成要素となる『 音の数 』を確保するために、複雑なゆれをするように作られていると考えています。

そのために”オールド・ヴァイオリン”などでは 薄板状に加工しても 立体的形状 によって剛性を高める技術として凹凸が『 木伏技術 』として用いられていると私は推測しています。

剛性 立体的形状 - 1 MONO L
この剛性を高める技術は めだちませんが たとえば 現代でも このコーヒー缶のように 用いられています。

さて、私たちは大量生産に適した 単純化されたフォルムをもつ工業製品にかこまれて生活していますので、ともすると 上に参考例としてあげさせていただいたヴァイオリンの裏板を見て 削りそこねた結果と思う方も多いと思います。

果たして それは事実でしょうか?

私は  ”オールド・ヴァイオリン”などを見る際は ”合目的性”ということを念頭に置き『 どこが、どのように窪んでいるか ?』という視線でそれを観察すると 本当に豊かな世界が見えて来ると信じています。

 

以上、ありがとうございました。

2016-7-21    Joseph Naomi Yokota

 

 

 

振動板について

 

1. 平面振動板

この平面振動についてはモーツァルトと同じ 1756年にドイツでうまれた物理学者 エルンスト・クラドニ( Ernst Chladni  1756年 – 1827年 )さんが 1787年に出版した音響学の著書  ” Entdeckungen ueber die Theorie des Klanges( 音響理論に関する発見 )” で発表した平面の振動を可視化する方法でつくられる “クラドニ図形 ” を意識するだけで十分だと思います。 これは振動している膜や板の上に砂を撒くと振動の” 節 “の部分に砂が集まりパターン( 模様 )が出来上がるものです。ご存じない方は次の動画をごらんください。

私は 弦楽器の響きが倍音特性にたよって説明されているのを耳にすると 少し心配になります。 それが重要なのは言うまでもありませんが ‥ 弦楽器は音色をゆたかにするために複数の波源が生じるように工夫されるなど、いくつかの条件の合わせ技でその響きが生みだされているからです。 私はこれらの技術の端緒は 古の弦楽器製作者の日常のなかにあったと考えています。 そこでその一例として皆さんに 硬貨を落としてしまったシーンをイメージしていただきたいと思います。 最初に百円硬貨でいきましょう。 さて‥ どういう音がするでしょう? そして次に五円硬貨を落としました。これはどうでしょうか? これらの音の差をご存じ無い場合は、恐縮ですが 下の動画を参考にしてください。 https://youtu.be/32QUhJjBsx8 この動画でも分かるように 百円硬貨は震え方の違いによりいくつかの振動モードがその響きを生みだしますが、それは主に”外側のへり”から発生しているようです。 ところが穴があいている五円硬貨は”外側のへり”に加えて “内側のへり”も 音を出しているのでそれぞれの振動モードが生みだす二つの音が同時に聞こえると思います。 私は こんなに単純な形状の違いでも 思った以上に明瞭な響きの差につながっている事実が大切と思っています。 https://youtu.be/_X72on6CSL0 https://youtu.be/6JeyiM0YNo4 https://youtu.be/osFBNLA7woY